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Abstract--In the present work the problem of optimizing the geometry of internally finned tubes in order 
to enhance the heat transfer under laminar flow conditions is studied. The velocity and temperature 
distributions on the finned tube cross-section are determined with the help of a finite element model, and 
a global heat transfer coefficient is calculated. A polynomial lateral profile is proposed for the fins and the 
geometry is optimized in order to make the heat transferred per unit of tube length or surface as high as 
possible for a given weight and for a given hydraulic resistance. Finally, the optimum fin profiles obtained 

by means of a genetic algorithm are shown for different situations. © 1998 Elsevier Science Ltd. 

INTRODUCTION 

In order to enhance the heat transfer, finned surfaces 
are commonly used in many engineering sectors. To 
remove high heat fluxes from very small components, 
the need to reduce the weight or the volume of thermal 
dissipator systems has become even more important, 
particularly in new applications, such as in the elec- 
tronic industry [1,2] or in the compact heat exchanger 
field [3]. Therefore, many researchers have studied the 
problem of optimizing the shape of the finned surfaces 
in order to increase the heat transfer effectiveness and 
reduce the weight of dissipators, but for many situ- 
ations a definitive solution has not yet been found. 

An optimum profile for longitudinal fins was pro- 
posed by Schmidt [4], who suggested the adoption of 
a parabolic shape. Such a suggestion was confirmed 
by Duffin [5] on the basis of a rigorous variational 
method. Afterwards, many authors contested 
Schmidt's conclusion [6, 7], which was correct from 
the point of view of the utilized model, but scarcely 
corresponding to the real phenomenon characteristics. 
Many fin profiles have later been proposed, mainly 
parabolic or triangular, leaving, however, uncertainty 
regarding the structural integrity of the fins [8]. Undu- 
late and parabolical-undulate fin profiles have recently 
been proposed and demonstrated as having a notice- 
ably improved effectiveness [9-11]. 

In a previous work [12] we presented a genetic algo- 
rithm which was able to optimize the heat transfer 
through longitudinal fins, whose lateral profile was 
described by a polynomial function, by considering a 
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constant convective heat transfer coefficient. Such an 
assumption has been followed by many authors who 
studied the problem of optimizing the lateral profile 
of longitudinal fins, but in some situations the vari- 
ations in the local convective heat transfer coefficient 
induced by the alterations of the fin shape cannot be 
correctly neglected. In particular, in internally finned 
tubes, in which a coolant fluid passes through in lami- 
nar flow, the alteration of the lateral fin profile can 
cause great changes in the local convective heat trans- 
fer coefficient. 

In the present work we then study the problem of 
optimizing the geometry of internally finned tubes in 
which a heat flux uniformly imposed on the external 
surface is dissipated under conditions of laminar cool- 
ant flow. Such a problem finds practical application 
in the compact heat exchanger field or in the electronic 
component cooling sector, when the coolant velocity 
must be reduced in order to lower the noisiness of the 
devices, to avoid excessive power dissipations or to 
prevent the miniaturized structures from large pres- 
sure gradients. To study this problem, a mathematical 
model which is able to take the thermofluido- 
dynamical alterations induced by changes in the fin 
profile into account is proposed. Moreover, some 
criteria for optimizing the performances of finned 
tubes, paying particular attention to the weight and 
the hydraulic resistance, are discussed. Finally, an 
appropriate genetic algorithm is utilized in order to 
find the optimum geometry in different situations. 

THE FINNED TUBE MODEL 

Let us consider a tube with internal fins, which are 
identical and have an axial symmetrical cross-section 
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NOMENCLATURE 

a height of the fins [m] 
Cp specific heat capacity of the coolant 

[J kg -I K -l] 
E~ compared effectiveness 
f fin profile angle as a function of r [rad] 
F'v viscous force per unit of length [N m -I] 
gAik elements of the surface averaging 

matrix [m 2] 
gM,k elements of the momentum 

transportation matrix 
gH~ elements of the heat transportation 

matrix 
h global heat transfer coefficient 

[Wm 2K-1] 

kc thermal conductivity of the coolant 
[W m -I K -1] 

li perimeter crossed by q" around the ith 
knot [m] 

M scale factor depending on the 
hydraulic resistance 

n polynomial order 
Nue equivalent Nusselt number 
p generalized pressure [N m -z] 
q" heat flux per unit of surface [W m -2] 
q[, conductive heat flux which enters the 

ith knot per unit of length [W m -t] 
q f, convective heat flux which leaves the 

ith knot per unit of length [W m-~] 
r radial coordinate [m] 
r1 radial coordinate of the ith knot [m] 
R internal radius [m] 
R'p, resultant of the pressure forces acting 

on the ith knot per unit of length 
[N m--'] 

R~. resultant of the viscous forces acting 
on the ith knot per unit of length 
[N m- ' ]  

s unfinned wall thickness [m] 
tl temperature of the ith knot [K] 
Tb bulk temperature of the coolant [K] 
Tc temperature of the coolant [K] 
Tf temperature of the finned tube [K] 
Tmax maximum temperature on the external 

surface [K] 
u coolant velocity [m s-z] 
u1 coolant velocity of the ith knot [m s-~] 
wi coolant volume flow rate of the ith 

knot [m 3 s-i]  
w, total coolant volume flow rate [m 3 s-l]  
z longitudinal coordinate [m]. 

Greek symbols 
(X 

7 

q 
0 
0i 

# 

P 
O" 

¢ 
4,, 

normalized height of the fins 
angle between two symmetry axes [tad] 
ratio between finned tube and coolant 
thermal conductivity 
normalized radial coordinate 
angular coordinate [rad] 
angular coordinate of the ith knot 
[rad] 
dynamic viscosity [kg m- ~ s 1] 
normalized area of the fin cross-section 
coolant density [kg m -3] 
normalized unfinned wall thickness 
normalized average wall thickness 
fin profile angle as a function of t/[rad] 
fin profile describing parameters 
polynomial coefficients. 

[Fig. 1 (a)]. A heat flux q" is uniformly imposed on the 
external surface. Moreover, a coolant passes through 
the tube in laminar flow. 

The heat transfer performances of the system can 
be determined by studying a portion of it delimited 
by two symmetry axes [Fig. l(b)]. Let us choose a 
cylindrical coordinate system with the z-axis directed 
as the coolant flow. Let a be the fin height in the radial 
direction and f(r) an arbitrary function of the radial 
coordinate r which provides the value of the angular 
coordinate 0 on the lateral fin profile. Moreover, let 
R be the internal radius, s the unfinned tube wall 
thickness and fl the angle between the symmetry axes. 

Supposing that the system is in steady state and the 
natural convection is negligible with regard to the 
forced one, then where the velocity profile is com- 
pletely developed the velocity vector u is parallel to 
the z-axis and is constant in the z-direction. Assuming 
uniform fluid properties and negligible viscous dis- 

sipation within the fluid, the coolant flow is then 
described by the following equation : 

(Ou) i O 2 u l d p  
1 0 r-or + (1) 
r Or r 2 002 # dz 

# being the dynamic viscosity and p the generalized 
pressure, which includes the gravitation potential. 
Equation (l)  must be integrated by imposing as 
boundary conditions that on the contact surfaces with 
the solid the velocity is null and on the symmetry axes 
and center the partial derivative of the velocity in the 
normal direction is null. 

Where the thermal profile is fully developed, since 
the heat flux q" is uniform, the temperatures of the 
fluid and of the solid linearly change with the z coor- 
dinate. The conductive heat flux in the z-direction 
is constant and can be neglected in thermal power 
balances. Therefore, the temperature distribution in 
the coolant is described by the following equation : 
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Fig .  1. F i n n e d  tube  g e o m e t r y  : c ross-sec t ion  (a),  s u b d i v i s i o n  
of a portion of the cross-section in finite elements (b). 

An approximate example of subdivision is shown in 
Fig. 1 (b). A large grid has been drawn for better 
comprehension. The elements of the coolant which 
are near the lateral fin surface can be more closely 
spaced in the 0-direction, since in the boundary region 
higher changes are expected in the velocity and in the 
temperature. In the r-direction the elements should 
always be closely spaced, in order to follow the fin 
profile without excessive distortions. 

Let the velocity vector in each element of the cool- 
ant be approximated by an interpolation of the values 
u, which it assumes in the four knots of the element : 

In r - In rj(i~ O-- Oko~ 
u(r, 0) = ~ ~ 0 , -  Oku, U, (4) 

r,, rj, 0~ and Ok being knot coordinates. The element 
can be subdivided in four subelements by joining the 
middle points of the opposite sides. On the sub- 
dividing lines the viscous force which interacts 
between the parts of the element for a unitary length 
of the tube can be calculated as follows : 

F; = # 2 l[O - Ok(,,] dz - I[ln r - I n  (/u,] d(ln r) 
, [In r , -  In r/ud [o , -  Oko~] Ui. (5) 

The resultant of all the viscous forces which act on the 
subelements which are around a knot can be written as 

0r~ 1- (? (rOT¢~+ 1 (?2T¢-PCpu (2) 
r Or \ Or J r z 002 kc Oz 

p being the density, Cp the specific heat and kc the 
thermal conductivity of the coolant. The temperature 
distribution in the finned tube is instead described by 
Laplace's equation : 

1 0  ( r O T f ) +  1 0 2 T r _ o .  (3) 
r Or \ (?r ) r 2 (?02 

Equations (2) and (3) must be integrated by imposing 
as boundary conditions that on the contact surface 
between the solid and the fluid Tc is identical to Tr and 
the heat flux in the normal direction in the solid is 
identical to that in the fluid, on the symmetry axes 
and center the heat fluxes in the normal direction are 
null and on the external tube surface the heat flux in 
radial direction is equal to -q" .  Moreover, the value 
of the temperature in one point of the section is 
required. Since the problem is very complex, it is con- 
venient to determine the velocity and temperature dis- 
tributions numerically, using for example a finite 
element method. 

By opportunely locating some knots, we can sub- 
divide the portion of the cross-section of the finned 
tube into an array of elements delimited by two con- 
centric arches and two segments. In the center of the 
tube an element with the form of a circle sector can 
be located: suppose that in this element changes in 
the coolant velocity and temperature are negligible. 

R~, i = [2 2 g M i k b l k  (6 )  
k 

where the k index is extended to the knot i and to 
those which are around it. The parameters gMik depend 
on the coordinate of these knots and of those which 
delimit the subelements around the knot i. For the 
knots on the symmetry axes and around the tube 
centre gMik must be calculated by taking the conditions 
of null momentum flux into account. Since the flow is 
steady, the viscous resultant must be balanced by the 
resultant of the pressure forces : 

Rp, = S i ~  (7) 

where Si is the total transversal surface of all the 
subelements around the knot i. Letting R;, be equal 
to R'v, for all the knots, one obtains the following 
system : 

l~Pzz G M * U = - A (8) 

having gathered in matrix GM the elements gMik, in 
vector U the velocities u~ and in vector A the surfaces 
S~. Vector U can now be partitioned by grouping all 
the known terms in the subvector U~ and the 
unknowns in U2. Matrix GM and vector A must be 
consequently partitioned. From eqn (8) we then 
obtain 

ldpA G 
G M 2 2 *  U2  = ~ z ~  2 - -  M21 :~ U l .  (9 )  
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By solving eqn (9) the velocity distribution in the 
portion of the conduit section is determined. 

Let the temperature in each element be approxi- 
mated by an interpolation of the temperatures tk of 
the knots, with the same form factors of eqn (4). Due 
to the analogy between the momentum transfer and 
the heat transfer, the conductive heat flux which enters 
the subelements around a knot for a unitary tube 
length is then 

q'k, = kc ~',gHiktk + llq" (10) 
k 

where Ii is the total perimeter of the subelements which 
is crossed by q". For the internal knots of the coolant 
the parameters gH,~ are identical to gM~k, for those of 
the solid they must be calculated taking the ratio 7 
between the thermal conductivity in the solid and in 
the fluid into account. In steady state the conductive 
heat flux which enters the subelements in the trans- 
versal direction must be balanced by the convective 
heat flux in the longitudinal direction : 

~Tc 
q'~ = pWiCp Dz (11) 

where w, is the volume flow rate through the sub- 
elements around the knot i. The volume flow rate is 
zero for all the internal knots of the finned plate. For 
the other knots it can be calculated by integrating eqn 
(4) on the surface of the subelements around each 
knot. It then follows that 

W i = 2 , q A i k U k .  (12) 
k 

On the cross-section the partial derivative of the tem- 
perature in the z-direction is constant and can be 
written as a function of q" : 

~Tc q"(R + s)fl 
(13) 

~z pwtcp 

where wt is the total volume flow rate through the 
conduit section. The convective heat flux then results : 

q"(R + s ) f l ~  
qc, - 2,aff AikUk . (14) 

Wt k 

By letting q~, be equal to q~, for all the knots we obtain 
the following system : 

G .  *T = D (15) 

q" [(R+s)fl° " -L) 
D = k c ~  wt t , n , u  (16) 

having gathered in matrices GH and G A the parameters 
gHik and gAik, respectively, in vector T the temperatures 
tk of all the knots and in vector L the perimeters lk. 
Vector U has now been extended to include the finned 
tube internal knot velocities, which are zero. Vector T 
can be partitioned by putting the temperature of an 
arbitrary knot (for example that with coordinates 
(R + s, fl), in which the maximum of the temperature 

is expected) in the subvector T~ and the other tem- 
perature in the subvector T2. Matrix GT and vector L 
must be consequently partitioned. From eqn (16) we 
then obtain 

GH22 *T2 = D2-GH21 *TI. (17) 

By solving eqn (17) the temperature distribution in 
the portion of the cross-section is determined as a 
function of T~. 

The bulk temperature can be calculated by 
assuming that the product of velocity and temperature 
in each element is approximated by an interpolation 
of the value which it assumes in the knots, with the 
same form factors of eqn (4). It then results in 

Tb = l ~i ~gnikuktk (18) 

where the index i is extended to all the knots of the 
coolant. 

Since the system is linear, an arbitrary value can 
finally be assigned to Tj in order to calculate the global 
heat transfer coefficient of the finned tube. 

FINNED TUBE DESIGNING 

Finned tubes are often used for removing heat fluxes 
which are imposed on the external surface. In such 
a situation the heat transfer optimization problem 
comprises dissipating as high a heat flux as possible, 
keeping the temperature of the external surface under 
a required value. The performances of the dissipative 
system must then be evaluated paying particular atten- 
tion to the maximum drop between the temperature 
of the external surface and the bulk temperature of 
the coolant which flows inside the tube. 

An appropriate global heat transfer coefficient for 
the system described in the previous section can be 
defined as follows : 

q" 
h = (19) 

Tmax- Tb 

where Tmax is the maximum temperature on the exter- 
nal surface. Moreover, it is possible to define an equi- 
valent Nusselt number : 

h 2 ( R + s )  
Nue - - -  (20) 

ko 

which corresponds to the Nusselt number which 
would be calculated if the same heat flux q" were 
dissipated through a finless tube with a null wall thick- 
ness and radius equal to R + s .  Such an equivalent 
Nusselt number is, for the finned tube, a function of 
the ratio ~,. 

It is interesting to observe that the heat flux, which 
can be removed by the finned tube per unit of length 
for a given drop between the external surface and bulk 
temperatures, depends only on the equivalent Nusselt 
number and does not change with the tube size. As a 
consequence, the heat flux dissipated per unit of sur- 
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face is inversely proportional to the tube radius. A 
criterion for optimizing the fin relative dimensions 
and shape can then consist in maximizing Nuo. In 
this way, for a given bulk temperature at a given 
coordinate z the finned tube dissipates the maximum 
heat flux per unit of length without exceeding the 
maximum temperature limit on the external surface 
at the coordinate z. 

In many heat transfer optimization problems the 
dissipator is required to have as small a weight as 
possible. In finned tube designing it may then be useful 
to choose an unfinned tube with an established wall 
thickness as a reference and try to find the finned tube 
geometry which allows the highest equivalent Nusselt 
number to be obtained with the same weight of the 
reference tube for the same material, and hence with 
the same solid volume. 

Moreover, in order to respect the temperature limit 
for an extended tube length it is expedient to let the 
bulk temperature slightly increase with the z coor- 
dinate. This is obtained by increasing the mass flow 
rate as much as possible. If the pressure drop between 
the beginning and the end of the tube is constrained, 
the maximum mass flow rate is obtained in cor- 
respondence with the lowest hydraulic resistance. 
After having optimized the tube geometry in order to 
maximize the heat flux which can be removed per unit 
of tube length, if the tube size is not constrained it is 
possible to obtain an established value for the 
hydraulic resistance by varying the tube radius. On 
the other hand, when the heat flux per unit of surface 
is required to be maximized, the tube size must be 
considered during the geometry optimization. 

In order to evaluate the performances of finned 
tubes in terms of heat flux dissipated per unit of sur- 
face for the same hydraulic resistance and the same 
drop between the external surface and bulk tempera- 
ture, a compared effectiveness can then be defined as 
the ratio between the global heat transfer coefficient 
of the finned tube and that of an unfinned tube with 
null wall thickness and the same hydraulic resistance 
of the first [13]: 

h2R/M 
Ec - - -  (21) 

4.364k¢ 

where M is a scale factor which can be calculated as 
the fourth root of the ratio between the hydraulic 
resistance of the finned tube and that of an unfinned 
tube with the same internal radius : 

M = 4 / ( - d p / d z ) l  8~ 
(22) 

GEOMETRY OPTIMIZATION 

Parameters R, s, fl, a and the profile function f ir)  
describe the geometry of the finned tube. Referring a, 
s and the radial coordinate to the inner radius it is 

possible to introduce the following variables, which 
do not depend on the tube size : 

a s r 
= -R, a = ~ ,  q = ~ ,  4,(q) = f(rIR 1. (23) 

Let us assign a polynomial form to the profile function 

4': 

4,(q) = ~ ~kirf. (24) 
i=O 

As fin profile-describing parameter the values of 4, in 
n + 1 equidistant points on the ~/-axis can be chosen : 

4 , 1 = 4 , ( 1 - / ~ )  V i=0 ,1  . . . . .  n. (25) 

The polynomial function in fact is univocally deter- 
mined by the values which it assumes in cor- 
respondence with n + 1 values oft/. Moreover, changes 
in 4,e induces in 4,(r/) variations of a more comparable 
entity than do changes in qJ~. For this reason the first 
ones are preferable as fin profile-describing par- 
ameters instead of the latter. The area of the fin cross- 
section ~ and the average thickness of the finned tube 
wall 6" then result : 

= 2 ~ ~0,(4,0 . . . .  4,,) 1 - ( 1 - c t )  ~+2 
,=0 ' i + 2  (26)  

6 =  (1 +tz)2 + ~ -  1. (27) 

Parameter ~ is representative of the solid volume of 
the finned tube. 

The geometry optimization problem consists now 
in finding the combination of parameters ~t,/1, tr and 
4,i which allow the maximum Nu~ or Ec to be obtained 
with respect to some constraining conditions. When 
only one parameter can be varied, as a consequence 
of the constraints, the optimum geometry can be 
determined with simple methods, which find, for 
example, the best parameter values by appropriate 
attempts. In the other cases the problem becomes 
more difficult. To solve it the following genetic algo- 
rithm [12, 14, 15] can then be successfully used. 

The algorithm starts with a population of par- 
ameter combinations which have been generated by 
copying, with random mutations, the parameters of a 
prototype combination. For each combination of the 
initial population Nuo or Eo are then calculated as an 
evaluation. Afterwards, an established percentage of 
the combinations is selected on the basis of the best 
evaluation. The parameters of the selected com- 
binations are then reproduced with random mutation 
in order to generate a new population of the same 
proportions of the initial one. The combinations of 
the new population are valued and selected in the 
same manner as those of the parental population. 
The process is iterated until the evaluations no longer 
improve. 
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After reproduction some parameter can result as 
exceeding established limits related to the structural 
integrity of the system or to some particular require- 
ment. Such a parameter must then be resized to the 
nearest acceptable value. Parameters ~bl must be 
resized together by considering the minimum ~bmi n and 
the maximum ~bm,x values which 4~(q) assumes for 
between 1 - ~  and 1 : 

f ~bma x -- 0mi n (J~max ~ ~ ( ( ~ m a x  -- ~)i) if ~bmin < 0rain 
Wmax ~ Wmm 

Vi=0 ,1  . . . . .  n (28) 

~i being the new parameter values, 0ram and 0max the 
minimum and the maximum angles which are accept- 
able on the lateral fin profile. 

When the optimization problem consists of finding 
the parameter combination which presents the highest 
Nu~ keeping the finned tube average wall thickness at 
an established value #0 for a given number of fins, 
parameters ~ and ~bi can be reproduced with random 
mutations, while a must be calculated as follows : 

J 6 =  (l +#o)2-- ~ - -  1. (29) 

If a results as being negative or too small, parameters 
~bi can be opportunely resized or the parameter com- 
bination can be rejected by assigning it as a null evalu- 
ation. 

When the problem consists of maximizing the heat 
flux per unit of length or surface for given solid volume 
and hydraulic resistance, an unfinned tube can be 
chosen as a reference. The reference radius R~ and wall 
thickness s~ must be established in order to respect the 
requirements. For a given number of fins, parameters 

and ~b~ can then be reproduced with random 
mutations. After having determined the velocity dis- 
tribution in the finned tube cross-section referring to 
R, the scale factor M can be calculated. In order to 
present the required hydraulic resistance, the finned 
tube will have an internal radius equal to M times R,. 
Taking this dimensioning into consideration, par- 
ameter a can finally be determined as in the previous 
paragraph after having calculated the required value 
of ~0 on the basis of s, and M. 

time in which an improvement was no longer 
observed. 

In order to maximize the equivalent Nusselt 
number, for a number of fins equal to four, eight and 
16 some preliminary trials have been carried out by 
choosing n equal to 0 and leaving all the other par- 
ameters free to change. As a prototype a finned tube 
with ~ equal to 0.5, a equal to 0.1 and ~b0 equal to 
///2 was employed. As it was intuitively expected the 
algorithm tried to extend the normalized height of the 
fin ~ as much as possible in order to create separated 
narrow channels. Aiming to allow a more uniform 
distribution of the coolant in the tube, in the sub- 
sequent optimizations ~ has been constrained to 0.8 
and q~(q) has been imposed to be no greater than 
0.95fl. Moreover, to ensure the structural integrity of 
the finned tube, cr has to be imposed to be no less than 
0.05 and ~b(~/) no less than 0.05//. In this way the 
minimum acceptable width of the fin at the base results 
as being greater than at the tip. 

In Fig. 2 some finned tube geometries which max- 
imize Nue are shown for n equal to 0, 2 and 4,/3 equal 
to n/4 and 7 equal to 500. The high value of//allows 
changes in the lateral fin profile to be better appreci- 
ated. The value chosen for 7 corresponds to the case 
of a finned tube made of copper and cooled by water. 
The describing parameters of the optimum geometries 
are reported in Table 1 together with the average 
finned tube thickness, the equivalent Nusselt number, 
the compared effectiveness and factor M, which is 

n = 0 NUe= 29.31 5 = 0.3535 

n=2  NUe=32.97 ~=0.4924 

RESULTS 

Some optimizations of the finned tube geometry 
have been carried out with the genetic algorithm 
described in the previous section. In every case, popu- 
lations of 20 samples and a selection percentage equal 
to 20 were established. During parameter repro- 
duction uniformly distributed between - 1 0  and 
+ 10% random errors were introduced. The genetic 
algorithm was stopped after 40 generations from that 

n=4  Nu e=48.47 o=0.3419 

Fig. 2. Finned tube geometries which maximize Nuo when e 
is equal to 0.8, fl to n/4 and ~ to 500. 
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Table 1. Characteristic parameters of some optimum finned tube geometries. Cases are listed in the same order they are 
discussed in the text 

y n ~ a ~o ~l ~2 ~3 ~4 Nue Ec M 

g/4 500 0 0.354 0.05 0.5969 . . . .  29.31 1.97 3.26 
x/4 500 2 0.492 0.299 0 . 0 6 2 1  0.6234 0.175 - -  - -  32.97 2 . 1 8  2.66 
re/4 500 4 0.342 0 .151  0 . 1 5 1 5  0.4325 0.7157 0.231 0.5848 48.47 3.54 2.73 
g/4 500 0 0.3 0.05 0 . 4 8 0 6  . . . .  23.84 2.1 2.48 
n/4 500 2 0.3 0.075 0.071 0.6135 0.1645 - -  - -  32.26 2.62 2.63 
~/4 500 4 0.3 0.111 0.171 0.3915 0.7307 0.2251 0.5517 48.06 3 .71  2.67 
n/4 500 0 0.2 0.05 0 . 2 7 6 1  . . . .  19.74 2.33 1.85 
n/4 500 2 0.2 0.05 0 . 0 4 0 1  0.3928 0.0502 - -  - -  23.13 2.57 1.96 
n/4 500 4 0.2 0.051 0 . 2 9 3 7  0.2203 0.561 0.207 0.3076 34 .49  3 . 4 6  2.17 
n/4 500 0 0.1 0.05 0.0879 . . . .  18.16 2.54 1.56 
n/4 500 2 0.1 0 .05 0 . 0 4 0 8  0.0922 0.2706 - -  - -  18.54 2.53 1.6 
g/4 500 4 0.1 0.05 0.0584 0.0401 0.1005 0.1945 0 . 0 6 5 3  19.02 2.61 1.59 
n/4 50 0 0.3 0.05 0 . 4 8 0 6  . . . . . .  20.9 1.84 2.48 
n/4 50 2 0.3 0.05 0.3144 0.5665 0.2778 - -  - -  23.66 1.95 2.64 
x/4 50 4 0.3 0.064 0 . 3 3 0 2  0.4621 0.7053 0.3408 0.7377 30.51 2.29 2.87 
g/8 500 0 0.3 0.078 0.216 . . . .  53.87 3.94 2.91 
g/8 500 4 0.3 0.126 0.069 0.2315 0.2506 0.047 0.3461 74 .03  5 . 3 2  2.83 
x/16 500 0 0.3 0.212 0.0452 . . . .  94.57 6 . 5 5  2.73 
n/16 500 4 0.3 0.198 0 . 0 4 2 6  0.0702 0.0479 0.0104 0 .1678  107.7 7.19 2.87 
n/4 500 0 0.203 0.05 0.2827 - -  - -  - -  19.81 2.32 1.87 
n/4 500 2 0.193 0.05 0.0408 0.3721 0.0453 - -  22.5 2.56 1.92 
n/4 500 4 0.182 0 .051  0 . 0 9 8 1  0.1949 0.4552 0.3089 0.0441 26.96 2.97 1.98 

representative of  the hydraulic resistance. The table 
also contains the characteristic parameters of  the opti- 
mum geometries which will be subsequently discussed. 

It is evident that under the above-considered con- 
ditions the adoption of  a lateral fin profile, along 
which the angular coordinate varies as a polynomial 
function of  the radial coordinate, provides noticeable 
advantages in terms of  heat transfer and required solid 
volume. The equivalent Nusselt number of  the tube 
with the opt imum fourth polynomial order lateral fin 
profile is in fact more than 1.6 times that of  the tube 
with the opt imum constant profile angle. Moreover,  
the first geometry requires a solid volume which is a 
little less than that of  the latter. Even with a second- 
order fin profile noticeable improvements are obtain- 
able in the heat transfer, but a greater solid volume is 
required. 

It is interesting to observe how the opt imum finned 
tube performances change by limiting the available 
solid volume. In Fig. 3 the geometries which maximize 
Nue when n is equal 0, 2 and 4 and ~ is equal to 0.3, 
0.2 and 0.1 are shown. By constraining the average 
wall thickness to 0.3 the relative improvements of  the 
higher order lateral fin profile increase. The equivalent 
Nusselt number of  the zero-order profile noticeably 
decreases, while that of  the second-order profile is 
affected by a small reduction, although its average wall 
thickness has been strongly lowered. The reduction of  
the average wall thickness to 0.2 causes significant 
decrements in Nu¢ for every polynomial order, but the 
higher order profiles still perform much better. When 

is reduced to 0.1 the equivalent Nusselt number does 
not  decrease much for the zero-order profile, while for 

the other order profiles it falls to low values which are 
near that of  the first one. 

Such a relationship between the available solid vol- 
ume and the maximum equivalent Nusselt number 
which can be obtained with the different polynomial 
orders can be explained by considering that the heat 
transfer improvements depend on the extension of  the 
fin surface, but mainly on the alteration of  the flow 
induced by the fin shape. In particular, the opt imum 
finned tube geometries are the result of  a compromise 
between two main thermofluidodynamical exigences. 
The first consists of  having, in the spaces between the 
fins, velocities which are comparable with those at the 
fin tip or higher. High velocities near the fin tip would 
cause in fact high thermal gradients in this region, 
which would lower the bulk temperature without 
enhancing the heat transfer from the unfinned part of  
the tube wall and from the lateral surface of  the fin, 
which is much more extended than the tip transversal 
one. The second exigence consists of  maintaining the 
velocity maximum as near the solid surface as poss- 
ible, in order to relatively increase the thermal gradi- 
ent. As a consequence of  the first exigence the channels 
which are created between the fins must not  be too 
narrow, and for the second one not too large. The 
higher polynomial order profiles, which are more 
articulate, can better satisfy both exigences, but when 
the available solid volume is too small to create 
sufficiently narrow channels they can only conform to 
the first one. 

This phenomenon can be better understood by 
observing the velocity distribution in the opt imum 
finned tube with second- and third-order lateral profile 
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Fig. 3. Finned tube geometries which maximize Nue when ct is equal to 0.8, fl to ~/4, y to 500 and O is 

constrained to different values• 
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Fig. 4. Velocity distributions in the cross-section in some of the cases of Fig. 3. Curves are drawn every 
10% of the maximum velocity. 

fins. In the portion of the cross-section shown in Fig. 
4 corresponding to the case of second-order profile 
fins with sufficiently high amounts  of solid volume 
two channels can be distinguished, at the center and 
close to the wall of the tube, in which the maximum 

velocities reach comparable values• Under  the same 
conditions the third-order profile, which is more 
articulate, creates three channels with comparable 
maximum velocities, in which the temperature gradi- 
ents are relatively higher (Fig. 5). When the available 
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Fig. 5. Temperature distributions in the cross-section in the same cases of Fig. 4. Curves are drawn every 
10 % of the difference between the maximum and minimum temperatures. 

solid volume is too small, since sufficiently narrow 
channels cannot be created, the exigence of obtaining 
higher velocities in the space between the fins than at 
the tube center prevails (Fig. 4). 

By varying the available solid volume it could be 
observed that in general there is no monotonic 
relationship between this parameter and the heat flux 
which can be dissipated by a fin profile of an estab- 
lished order. For  this reason, contrary to what occurs 
under different conditions, it is not possible to define 
a comparable effectiveness of the fin as the ratio 
between the heat flux removed and that dissipable 
with another fin with a reference shape and with the 
same volume of the first. 

It is important to observe that the fourth-order 
profile allows the lateral fin surfaces to be better 
exploited in terms of heat transfer than does the 
second-order profile. When ~ is equal to 0.3 the low 
density of isothermal curves in the space between the 
beginning of the fin and the tube wall (Fig. 5) dem- 
onstrates that a very low heat flux is extracted from 
this region. In particular, the coolant nearly stands 
still (Fig. 4) and the heat passes through it from the 
tube wall to the fin. The local convective heat transfer 
coefficient is then negative at the beginning of the fin. 
This phenomenon is avoided by the fourth polynomial 
order optimum finned tube. Therefore, the local heat 
transfer coefficient, under similar conditions, is very 
sensitive to the fin shape and a mathematical model 
which assumes this parameter as a constant cannot be 
successfully employed for fin profile optimization. 

Figure 6(a) compares the Nusselt numbers of the 
optimum geometries obtained for n equal to 0, 2 and 
4, tr constrained to 0.3 and 7 equal to 50 and 500. It 
can be observed that when V is lower for a magnitude 
order the improvements in the heat transfer are 
smaller, but the higher order profile fins still perform 
significantly better than the zero-order ones. 

The Nusselt numbers of the optimum geometries 
obtained for V equal to 500, tr constrained to 0.3 and 
fl equal to n/4, n/8 and ~z/16 are compared together in 
Fig. 6(b). For fl equal to n/8 the fourth-order fin 
maintains a shape which is similar to that assumed by 
the fin for fl equal to n/4. When fl is equal to n/16, 
since the coolant velocity at the tube center is much 
higher than between the fins the exigence of enlarging 
the channel in this region prevails, and the fin results 
in being flatter (Table 1). If  the fin height were greater 
and the channel at the tube center narrower, the opti- 
mum fourth-order fin could be more ondulate and 
efficient. 

The improvements in the equivalent Nusselt num- 
ber of the above-discussed finned tube geometries do 
not always result in an increase of the hydraulic resist- 
ance. It is then interesting to optimize the geometry 
whilst trying to maintain the hydraulic resistance at 
low values, as in the following examples. 

The characteristic parameters of the finned tube 
geometries which maximize the dissipated heat flux 
per unit of length with the same hydraulic resistance 
and the solid volume of a reference unfinned tube 
whose wall thickness is 0.6 times its radius are reported 
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constrained to 0.3. 

in the last three rows of Table 1. The higher order 
profiles still perform noticeably better and the increase 
in the scale factor M are limited. The same optimum 
geometries also result by maximizing, under the same 
conditions, the dissipated heat flux per unit of surface. 

higher when the ratio between the thermal con- 
ductivity of the solid and the fluid is high and when 
the fins are more widely spaced. In the studied cases 
the higher order fin profiles do not always cause a 
greater hydraulic resistance than the zero-order one. 
When that occurs, the disadvantage related to the 
increase in the hydraulic resistance is largely overcome 
by improvements in the heat transfer. Therefore, the 
geometries which provide the greatest Nusselt num- 
bers also present the highest compared effectiveness. 

The proposed optimization algorithm appears to 
be a useful tool to solve the problem of finding the 
optimum finned tube geometry with regards to the 
dissipated heat flux per unit of length or surface. It 
can be used to fit the parameters of more complex fin 
profile-describing functions. A polynomial form has 
been considered in the present work, because it allows 
sufficiently articulate profiles to be obtained without 
complicating the finned tube production too much. 
Since the greatest improvements in the heat transfer 
of the found optimum geometries appear to be derived 
from the fluidodynamical more than from the con- 
ductive fin characteristics, it would be interesting to 
test the performances of fins containing empty spaces. 

Internally finned tubes with the optimum geo- 
metries which have been presented in this work can 
be produced by extrusion of melted metal through an 
appropriate die and subsequent rectification by means 
of a cursor which expands the tubes and gives the fins 
their final shape. 

By considering temperature-dependent parameters, 
a more rigorous solution could be obtained for the 
problem of optimizing the heat transfer in internally 
finned tubes under laminar coolant flow conditions. 
For the case in which longitudinal conduction slightly 
influences the heat transfer, the proposed math- 
ematical model could still be utilized by solving eqns 
(9) and (17) iteratively. The same optimization algo- 
rithm could probably be successfully employed. 

CONCLUSIONS 

The results obtained demonstrate that it is possible 
to noticeably increase the heat transfer effectiveness 
of an internally finned tube by assigning to the fin an 
ondulate lateral profile such as that described by a 
polynomial function, when the available solid volume 
is sufficiently high. In the case of a finned tube made 
of copper and cooled by water with an average wall 
thickness equal to 0.3 times the internal radius the 
optimum fourth polynomial order profile provides an 
increase of more than 100 % in the dissipated heat flux 
per unit of length with respect to the optimum tube 
zero-order profile. Minor reductions of the available 
solid volume do not affect the improvements of the 
polynomial fin profiles significantly, but when this 
parameter is reduced to very low values such improve- 
ments become almost null. 

The increments in the dissipated heat flux due to 
the adoption of an ondulated lateral fin profile are 

REFERENCES 

1. Bar-Cohen, A. and Kraus, A. D., Advances in Thermal 
Modeling of Electronic Components and Systems, Vol. 2. 
ASME, New York, 1990, pp. 41-107. 

2. Cesini, G., Ricci, R. and Ruggeri, B., Ottimizzazione di 
dissipatori di calore alettati per applicazioni elettroniche. 
Modello numerico e verifica sperimentale. In Pro- 
ceedings of the l Oth UIT National Congress, Italy, 1992, 
pp. 201-212. 

3. Kays, W. M. and London, A. L., Compact Heat 
Exchangers, 3rd edn, Chapter 1. McGraw-Hill, New 
York, 1984. 

4. Schmidt, E., Die Warmeuebertragung durch Rippen. 
Zeitschrift des Vereines Dentscher Ingenieure, 1926, 70, 
885-951. 

5. Duffin, R. J., A variational problem relating to cooling 
fins. Journal of Mathematical Mechanics, 1959, 8, 47-56. 

6. Maday, C. J., The minimum weight one-dimensional 
straight fin. ASME Journal of Enyineerin9 in Industry, 
1974, 96, 161-165. 

7. Snider, A. D. and Kraus, A. D., The quest for the opti- 
mum longitudinal fin profile. Heat Transfer Enyineering, 
1987, 8(2), 19-25. 



Heat transfer optimization 1253 

8. Tsukamoto, Y. and Seguchi, Y., Shape optimization 
problem for minimum volume fin. Heat Transfer 
Japanese Research, 1984, 13, 1-19. 

9. Snider, A. D., Kraus, A. D., Graft, S., Rodriguez, M. 
and Kusmierczyk, A. G., Optimal fin profiles. Classical 
and modem. In Proceedings of the 9th International Heat 
Transfer Conference, Vol. 4, Jerusalem, 1990, pp. 15-19. 

10. Spiga, M. and Fabbri, G., Efficienza di dissipatori a 
profilo sinusoidale. In Proceedings of the 12th UIT 
National Congress, L'Aquila, Italy, 1994, pp. 197-204. 

11. Fabbri, G. and Lorenzini, G., Analisi numerica bidi- 
mensionale di dissipatori a profilo sinusoidale. In Pro- 
ceedings of the 13th UIT National Congress, Bologna, 
Italy, 1995, pp. 491-499. 

12. Fabbri, G., A genetic algorithm for fin profile opti- 

mization. International Journal of Heat and Mass Trans- 
fer, 1997, 40(9), 2165-2172. 

13. Shah, R. K. and London, A. L., Thermal boundary 
conditions for laminar duct flow forced convection. 
ASME Journal of Heat Transfer, 1974, 96, 159- 
165. 

14. Queipo, N., Devarakonda, R. and Humphrey, J. A. C., 
Genetic algorithms for thermosciences research: appli- 
cation to the optimized cooling of electronic 
components. International Journal of Heat and Mass 
Transfer, 1994, 37(6), 893-908. 

15. Lorenzini, E., Spiga, M. and Fabbri, G., A polynomial 
fin profile optimization. International Journal of Heat 
and Technology, 1994, 12(1-2), 137 144. 


